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A dirm optimization method based on diffcrcn(ial  inclusion conccpLs  has been dcvclo@  and used
10 compulc  low thrus( lrajcc[orics. ~l~is ncw forinulation  mmovcs cxplici[  control dcpcndcnw  from the
problcm  statement thereby reducing [hc dimension of (hc paramc[cr  space of LIIC rcsul[irrg  nonlinear
prograrnrn  ing problcm. A simple example of a two-dirncmsional  gravity-free trajectory involving a
maximum velocity transfer to a rcclilincar  pa[h is discussed. ~’hrcz in[crjdanctary  trajectory examples, an
Earth-Mars conslan[ specific impulse [ransfcr,  an EarLh-Jupi[cr  constant specific irr]pul.sc transfer, and an
}\ar[h-Venus-Mars variable specific imprrlsc. gravity assis[,  arc also included, An cvahration of the
tdmiquc’s performance is provided,

lnfroduction

I,ow thrust c]e,ctric propulsion systems typically  have their greatest benefit for high

energy planetary missions. Missions that have been examined include main belt asteroid

rendcz,vous,  comet rendezvous, outer planet and Mercury orbiters, Pluto flyby and solar

probe missions. 1 Most low thrust mission design software use calculus-based algorithms

that can be subdivided into two main classes: indirect and direct. “l’he indirect approach
uses the calculus of variations to obtain a set of necessary conditions whose solution

ensures a local cxtremum of the objective function. In contrast, direct methods use

gradients of the objective function to search the parameter space and locate a local

cxtrcmum. l>irect methods often transform optimal control problems into nonlinear

programming problems (N1.P). With these methods, finite approximations to the state

diffcrentia] equations are exploited. ‘Ilc objective function is then directly n~inimimd by

varying di scrctc val ucs for the states and controls.

A direct method based on differential inclusion concepts has been developed and

used to compute low thrust trajectories, This new formulation removes explicit control

dependence from the problem statement thereby reducing the dimension of the parameter

space for the N] ,1>. As a consequence of eliminating the control parameters, fewer

nonlinear constraints arc required to rcprcscnt the dynamics of the problcrn.
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l’roblcm Statement

‘1’he equation of motion for a spacmraft subjm to a single gravitational scmrcc is

given through the rocket equation?

i’= g(r)+ ~j ti=g(r)-1  1“ (1)

where r is the position vector, g(r) the gravitational force per unit mass vector, “1’ the

engine thrust, il a unit vector in the thrust direction, 1‘ the thrust pcr unit mass vector and m

the vehicle mass. ‘1 ‘hc model used for the spacecraft’s propulsion system, whether constant

specific impulse (csi) or variable specific impulse (vsi), directly affects the relationship

between control effort and propellant consumption. “1’hc.  equations that govern the change

in mass for both csi and vsi systems arc given below. ‘l”he variable c is the propellant’s

exhaust velocity.

csi case: (2)

vsi case: (3)

The mass-control relationships described above may be written in a variety of

equivalent ways. ‘J’he expmsions shown in equations (2) and (3) are chosen to simplify

the following derivation. Define a state vector x that for the csi case is X1”= I rl’ VT y ]

where v is the vcbcity  vector and y== in (m) and for the vsi case is X1’= r~’ V1” a ] where[
cx = ii. q’he state rates for the two sysicms arc then obtained through equations (1)-(3),

~=. v (4)

csi case: V = g(r) -I ‘J’ exp (--y) O (5)

4 ’ . . . .  _  c‘J’ CX]J (- y)
x-

(6)

vsi case:

(7)

(8)
(9)



‘1’0 dc(ermine  an optimal trajectory, controls (’1’0 or 1”) must be chosen to satisfy any

boundary conditions on the. states while minimizing an objcctivc  function.

Rccent]y,  it has been shown that many optimal control problems can bc clcscribcd

by functional differential inclusions,  ~-c Differential inclusions represent the dynamics of a

problem in terms of attainable sets rather than differential equations, Seywald6

demonstrated how differential inclusions cou]d be used to solve one-dimensional trajectory
dy da

optimization problems. IIxamination  of equations (4)-(6) and (7)-(9) show that ;Ii and --
dt

contain information about the. control mngnitudc  but not the control direction, so for t}~rcc-

dimcnsional  trajectories where a control direction is needed, representing the problem with

differential inclusions is not straight-forward, 1 lowcvcr,  if the Y equations arc manipulated

to produce a scalar equation of the form given in equations (10)-(1 1), explicit appearance of

the control is removed from the differential equations.

csi case:

()dy 2 2
(+ - g(r))q’ (* - g(r))= ~t c

(10)

vsi case:
(+ - g(r))l’  (+ - g(r))= 2 $ :

(11)

This simple manipulation has eliminated the control vtiriables  from the problem

statement and replaced them with a nonlinear scalar constraint on the states and state rates.

‘l-he reduced-order problem consisting of equations (4), (6) and (1 O) for csi and (7), (9)

and (1 1 ) for vsi can be formulated as a non]incar  programming problem (N1.P). ‘1’o

convert to the NI.P form, the total maneuver time is divided into N segments. ‘1’hc end

points of each segment are defined as the left and right nodes and denoted by subscripts 1

and r. IIqual segment lengths ts arc assumed and first-order approximations are used for

the derivatives across each segment. State rates arc represented as:

(12)

‘l”he position derivative approximation given above is substituted into equations (4) and (7)

and the equation is evaluated at the segment center yielding 3 ]incar equality constraints for

each segment. A total of 3N linear equality constraints arc needed for the total trajectory.

l~ixed time tf maneuvers arc assumed, therefore t~ = tf/N.
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(w+ V1)4  ()r~- rl - *—— ..—. -_ (13)

‘1’he. nonlinear scalar constraint given in cquaticms  (1 O) ancl (11) is evaluated at the segment

center and becomes the nonlinear equality constraint below. A total  of N nonlinear

constraints are required for the entire maneuver.

csi case:
(v,- V1 t,g(rc))l(v,- VI t,g(rc)) - 2c~yr-y1]2 == O

vsi case:
(v,-vl- tsg(rC))l(v,-  v- t,g(rc)) - 2t,(ar- a,) = O

r] + rrw}~e,r~ rC =: –- ..—
2

(14)

(15)

“1’hc  mass-related variables (y,a)  evolve subject to the following nonlinear and linear

inequality constraints. ~’he inequality constraints demonstrate the differential inclusion

concc+t  of a state rate being contained in a set rather than being dictated by a differential

equality constraint. Note that this formulation does not assume a control structure for the

csi case. The control structure for the trajectory is contained in they values.

()‘Y* + Y]csi case: 0 s - (’Y, - y,) Cxp ---> c g “I’ t, (16)

csi case: yr-y]<o (17)

vsi case: O<ar - al<~ (18)

A  Simple  ltxamp]e

l;or illustrative purposes, a simple two-dimensional gravity-free csi example that

involves a maximum velocity transfer to a rectilinear path is discussed. “l”his problem was

selected because the solution can be obtained analytically through the indirect approach

outlined in Bryson and 110 [7]. Ilryson and } 10 formulate the problem in terms of thrust

acceleration where in this formulation the thrust magnitude divided by the current mass is

used, The optimal solution consists of a constant thrust magnitude T and a time-varying

control angle ~(t) described by the well-known bilinear tangent steering law. “1’hc problem

statement is to transfer a particle from rest at the origin to a path parallel to the x-axis a

distance h away in a given time tf arriving with zero velocity in the y direction and
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maximum velocity in the x direction. ‘J’hc following conciitions  were placed on the transfer.

‘Ilc initial mass of the vehicle m(to),  assumed to consist of only propellant, was set to

unity. The thrust magnitude and the total maneuver time tr were also set to unity. The

vertical distance h was chosen to be ().1 and the total number of segments N used to

discrcti?.c the trajcc[ory was sclcctcd as 10.

IJigurcs 1-4 display some charactcrist  ics of the optimal trajectory. 1+ ’igurc 1 shows

the trajectory, liigure 2 the velocity profile, and l;igurc 3 the. propcl]ant  mass history.

Cases were also 11111  with a limit on the propellant mass and the optimal solution used all

available propellant to maximize its final velocity. l:igurc  4 contains two curves for the

control angle @ As dcscribcd  in [7], indirect methods show that the optimal control angle

is given by the bilinear tangent steering law given by equation (19). ‘1’hc values of the

constants for this problem are c1 =- 3,38*10-5, c2=-3.68*1O-2,  c~==-1 .00* 10-1, and c4=-

2..87* 10-2. Using these numbers, equation (19) was used to calculate the control ang]e at

the segment endpoints.

(19)

‘1’he second curve comes from post-processing the output from the differential inclusion

N] Y and is plotted at the segment ccntcrs. If the approximations for the velocity rate of

change shown in equation (12) are used, the control angle from the differential inclusion

approach is calculated throug}~ the cquat ion p =- tan” 1 (Vy/VJ. ‘1’hc two curves, onc supplied

through an indirect method and the other through a direct method, verify that the two

solutions arc nearly identical,

lnfcrplandary  Trajectories

-Motivation

The ultimate goal of this research is to develop a tcchniquc w}lich can be used to

identify potential trajectories for low thrust missions. When planning conventional

interplanetary missions (using chemical propulsion), there is a wide array of tools and

techniques available to design tmjcctorics. ‘1’ypical]y,  trajectories are developed through a

series of steps beginning with simple conic approximations treating planets as point masses

and eventually including an optimization of deep space maneuver times and planetary

flybys. There may or may not be intcrmcdiatc  steps using multi-conies, but the process
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typically concludes with a numerical integration which incorporates a force model that may

include multi-body gravitational effects, spherical harmonics, drag, solar pressure, and

even relativistic effects. Generally, each step of the process is accomplished with a

diffcrcmt  piccc of software.

o 03 0,4 0.6 0.8 1 12
X Position

I’dl

];igurc 1-2: Position and Vclc~ity  Profiles

m

o o.? 0,4 0.6 0.8 1
Tln)el’ime

Figure 3-4: Mass and Control Angle Versus Maneuver Time

lJnfortunatcly,  a similar array of software tools for designing low thrust missions

does not yet exist. One reason is that low-thrust trajectories arc inherently more difficult to

model,  ]nstead  of a discrete. set of maneuvers and planetary encounters, a thrust direction

and magnitude must be optimized at cac}~ instant to minimize the objective function (or

maximize final mass), Low thrust trajectories at JP1. are computed with the VARIablc

thrust ‘1’rajcc(ory  Opt imiz,at icm Program (VA RI TOP). “1 ‘his program is a general purpose

two-body, sun-centered, low-thrust trajectory optimization and analysis program intended

for preliminary mission feasibility studies. II optimizes the trajectory by solving a two-

point boundary value problem (1’PBVP)  that invo]vcs numerical intcgrat  ion of t}lc state and

costatc  equations. VAR1’1’OP is a WC]] established program which has been used since the
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early 1960s. 1( is used in (his paper as a standard with which to compare the results

obtained with the different ial inclu sicm approach. VA R1’l’O1) ccmtai ns several propulsion

models, but the primary concern here is with the variable specific impulse (vsi) and

constant specific imj~ulse  (csi) models. l%r the csi cases it is also important to distinguish

between a constant power source  (such as nuclear) and a variable source (such as solar

electric). Only the constant power option is addressed in this paper.

I?xamples  of both vsi and csi trajeclorics,  comparing results between the differential

inclusion (DI) technique and VARI’I’OP  follow. It is hoped that the role that 111 will play in

the future is as a preliminary design tool - not unlike the way conies are used for impulsive

trajectories. One of the undesirable characteristics of using an indirect approach

(VARITOP),  is that a “starting gums” for the l.agrange  multipliers that correspond to the

initial state must be dctermi  ncd. It is son~ctimcs  u scful to associate a region of convergence

with the initial multiplier estimates. If the initial estimates are outside this region, it may be

very difficult to achieve a converged solution with VAIU”l’O1]. The D] technique does not

require an estimate of 1.agrange multipliers, but may be used to generate these multipliers,

thereby providing very good initial starting conditions for VARU’OP.

“1’he nonlinear programming problem (N1,l)) software N}’SO]. Version 4.08 was

used to obtain the differential inclusion mission scenarios described in the next section.

Upon converging to a finite-dimensional apj).roximation  of the optimal solution, NPSO1.

provides estimates on how constraining variables affect the optimal objective function. in

the following mission scenarios, the initial position and velocity have been specified.

llan~ilton-Jacobi  theory states that on the optimal trajectory, the costate  (1.agrangc

multipliers) is the sensitivity of the objcctivc function with respect to the statcs,7  and

therefore initial costatcs  arc available from NI’SOI.. If any initial condition is not specified

but allowed to be optimized, the initial value of the corresponding costate is zero.

“1’raiccto ry 13xamr)1eS

Three examples are shown that exercise various aspects of the differential inclusion

(111) approach. ~’hc first is an I;arth-Mars  csi trajectory. It is a fi~irly  straightforward case,

but includes a large coast arc. It is significant that the D] approach accurately models this

coast arc. ‘1’hc second example shown is a csi Harth-Jupiter trajectory which demonstrates

that this approach may be used for outer solar systcm trajectories with their longer flight
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times. The final case is a vsi llar(l]-Vel~tls-Mars  trajectory and demonstrates the ability to

model p]anctaly  gravity assists.

]’lgurc 5 shows the trajectories for the csi I{arih-Mars rendcz,vous  computcct by the

111 and VA R1’I’OP software. The spacecraft ctcparts Earth on November 19, 1994 with

IIarth’s orbital velocity. A rcndcz.vous  with Mars occurs 184 days later on May 22, 1995.

A constant power source of 450 kW and a specific impulse of 4860 seconds is used, l;or

the 111 approach, the total transfer time was divided into 20 segments. “1’hc  finite

approximation of the D] approach computes a coasting interval (denoted by dots) bctwccn

January 12 through March 2.8. ‘1’hc VARI-I’OP solution incluclcs a coast arc that begins on

January 10, 1995 and terminates on March 27, 1995. ‘1’hc two coasting periods differ by

only a few days. In each case, the spacecraft began the transfer with an initial mass of

10,000 kg. VARI’1’OP computes a final massof7185 kg where 1]1 finishes with 7149 kg,

‘1’hc 1)1 apjmoach gives an exccllcmt first-order approximation to the continuous optimal

solution.

. . . . . .,.. ” . .
. . ,. .,..  . ,
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F’igurc  5: liarth-Mars  CSI “1’rajcctorics  lhwm 1~1 (Icft) ancl VARI”I’011 (right)

‘1’hc next example shown in l~igurc 6 is an Iiarth-Jupiter csi 680 day transfer. Duc

to the larger transfer time, 30 segments were used for the IJI formulation. ‘1’hc spacecraft

departs Earth on May 2S, 2001, burns continuously until July 5, 2002, has a brief coast

pcrioct until August 8, 2002, and then burns until the. rendezvous with Jupiter on April S,
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2003. ‘lshe power source supplies 115 kW and the propulsion system has a specific

impulse of 4000 seconds. ‘1’he 111 software computed a coasting period of only 2 days

beginning on July 28,2002. “1’his  coasting arc is too small to be detected  on the plot. I]ot}]

trajectories began with an initial mass of 10,000 kg. VARITOP obtained a final mass of

3798 kg and D] 3526 kg, The flight time for this trajectory is more than 3,5 times as long

as the previous Mars trajectory. One might  expect that as flight times get longer, the D]

formulation will experience problems because the larger scgnlents  give a less accurate

representation of the trajectory. “J’his was not a problem in this case. Figure 6 shows quite

good agrcctncnt  between the two different approaches. Some experimentation was done

with Pluto trajectories and these seemed lo be more sensitive to this effect,

25 M.y  ?001

r—l . .
1,0 = l15kw ‘.
I$p  = 4 0 0 0 s . .

I O F  = 680d
.,

. .
— . . .

. .
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25 Mly 2001

S__n
. .

PO = 115 kw
ls,  ) = 4000s

. .
. .

105 =  680d
. .

,..—. .- —- . . .
. . . .

.’ .,. ,..
. . . ,.. ., ..””. . . . . . . . . . . . . . . . . . ...”

. . . . . . . . ,.  ...’

Figure  6: Iiarth-Jupiter CS1 Tmjcctorics  Ii-em 1)1 (left) and VARITOP (right)

The final trajectory shown in Figure 7 is a vsi liar[h-Venus-Mars trajectory with an

unpowered gravity assist at Venus. ~shc spacecraft departs on January 1 (), 2001, flies  by

Venus on May 10 and rendezvous with Mars on March 21, 2003. in each case, the initial

mass is 5,000 kg and the power source provides 33.9 kW. l;or the D] approach, each leg

of the transfer was divided into 40 segments. Note that in Figure 7 the discrete nature of

the D] approach is apparent after the ftyby of Venus when the spacecraft is traveling at a

higher speed,  The final mass predicted by D] was 3532 kg while VARITOP  predicted

3577 kg.
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‘1’he modeling ci a planetary flyby requires the addition of two nonlinear equality

constraints for each flyby. Since only unpowered flybys are considered, the first constraint

stare that the magnituctc  of the spacecraft velocity with mspcct  to the flyby body vm is

constant. In equation (20), v]ll and V“ut arc the heliocentric vcloeitics  before and after the

flyby. ~’he planet’s heliocentric vcloeity  is denoted by VI,,

‘J’he second constraint relates the flyby radius R of the spacecraft from
turning angle & “1’hc flyby body’s gravitational constant is denoted by p.

(2.())

the body to the

8 = 2sin-1 1 c,),-  , (V]n vP)’(y”-vPJ)(_ .—_. _. ____ ~
Rv2’m  ‘] + -... Ti–-

~ 2W
)

(21)

Using trigonometric identities on equation (21), the following constraint results.

i

2v2m——.—. . ..— 1 - p -- Vzml<  = o
1 V2M - (VI’K vJl(vo”t.  Vp)

(22)

l;igure  7: ]~arth-Venus-Mars VSI “1’rajeaorics  l;rom 111 (left) and VARITO})  (right)
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‘1’o usc VAR1’1’01’ to compute flyby trajectories, create values are required after

each gravity assist. Since Ihc position of the intcrtncdiatc  body is specified, the value  of the

costatc conjugate to the position is supplied by the NI .1] solver. I lowever, the costatc to

the velocity is not available since the incoming and outgoing velocity is to be optimized

subject to the two constraints given in equation (20) and (22). “1’twrefore,  optimal control

theory is used to calculate an estimate for the velocity ccmta[c  Lv. Costate estimates from

the converged diffmcntial inclusion code were used to initiate VAR1”l’OP  for the liarlh-

Venus-Mars trajectory.

~,, = gr) _ !’;,!!. (23)

Conclusions & I{ccorl~ll~cl~clnliot~s  for Uuturc Work

This paper discusses a tcchniquc for calculating optimal low-thrust trajectories

using a finite dimensional approximation to the continuous time problem. ‘1’he differential

inclusion technique formulates a nonlinear programming problem (NI .P) where the control

parameters are eliminated resulting in a scalar constraint on the states and state rates. The

parameter space of the resulting N] Y is the.rcby reduced over other direct methods.

The VARITOP trajectories shown in this paper were obtained using the initial

l.agrange  multiplier estimates from the diffcrcnial inclusion (111) solution. A significant

advantage of using the 111 software to obtain initial I.agrangc multipliers for VAR1’I’OP  is

that the user can walk away from the computer and work on something else while the D]

code runs. Using VARITOP alone with only the user’s best guess for the initial multipliers

may take as long if not longer to obtain the same results as the DI/VARITOII combination,

however, the user’s entire attention must be given to VARIrI’OP  due to it’s interactive

nature. The drawback to using 111 alone is its finite approximation to the continuous

problem. “1’o increase the accuracy of the differential inclusion solution, the number of

segments can be increased but this will bc at the expcJ]sc  of computation time required to

obtain a solution.

Wc bclicvc  that the 111 approach offers a powerful ncw technique for computing

low thrust ~ajcctorics.  Results demonstrate good agreement with established methods for a

variety of missions. in the future, the technique will be expanded to include a variable

power source so that missions such as solar electric maybe examined. Also, strategies for

rcduci  Jlg the computation time will be explored.



‘1’hc research described in this paper was cawied  out by the Jet Propulsion

1.aboratory,  California lnstitu(e of ‘1’ethnology, under a contract with the National

Aeronautics and Space Administmtion.
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